Structured Linear Model

Hung-yi Lee

Structured Linear Model

Problem 1: Evaluation

- What does $F(x, y)$ look like?
in a specific form

Problem 2: Inference

- How to solve the "arg max" problem

$$
y=\arg \max _{y \in Y} F(x, y)
$$

firahlem 3: Training

- Given training ciata, how to $\min \Gamma(x, y)$

Structured Linear Model: Problem 1

- Evaluation: What does $F(x, y)$ look like?

Characteristics

Structured Linear Model: Problem 1

- Evaluation: What does $F(x, y)$ look like?
- Example: Object Detection

$)=$
percentage of color red in box y
percentage of color green in box y
percentage of color blue in box y percentage of color red out of box y
area of box y number of specific patterns in box y

Structured Linear Model: Problem 1

- Evaluation: What does $F(x, y)$ look like?
- Example: Summarization

Structured Linear Model: Problem 1

- Evaluation: What does $F(x, y)$ look like?
- Example: Retrieval

Structured Linear Model: Problem 2

- Inference: How to solve the "arg max" problem

$$
\begin{gathered}
y=\arg \max _{y \in Y} \mathrm{~F}(x, y) \\
\mathrm{F}(x, y)=w \cdot \phi(x, y) \Rightarrow y=\arg \max _{y \in Y} \mathrm{w} \cdot \phi(x, y)
\end{gathered}
$$

- Assume we have solved this question.

Structured Linear Model: Problem 3

- Training: Given training data, how to learn $F(x, y)$
- $F(x, y)=w \cdot \phi(x, y)$, so what we have to learn is w

Training data: $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{r}, \hat{y}^{r}\right), \ldots\right\}$
We should find w such that

$$
\begin{aligned}
& \forall r \text { (All training examples) } \\
& \begin{array}{|l}
\forall y \in Y-\left\{\hat{y}^{r}\right\} \begin{array}{l}
\text { (All incorrect label } \\
\text { for r-th example) }
\end{array} \\
\quad w \cdot \phi\left(x^{r}, \hat{y}^{r}\right)>w \cdot \phi\left(x^{r}, y\right)
\end{array}
\end{aligned}
$$

Structured Linear Model: Problem 3

Structured Linear Model:

 Problem 3

Structured Linear Model: Problem 3

Solution of Problem 3

Difficult?

Not as difficult as expected

Algorithm

Will it terminate?

- Input: training data set $\left\{\left(x^{1}, \hat{y}^{1}\right),\left(x^{2}, \hat{y}^{2}\right), \ldots,\left(x^{r}, \hat{y}^{r}\right), \ldots\right\}$
- Output: weight vector w
- Algorithm: Initialize w = 0
- do
- For each pair of training example $\left(x^{r}, \hat{y}^{r}\right)$
- Find the label \tilde{y}^{r} maximizing $w \cdot \phi\left(x^{r}, y\right)$

$$
\tilde{y}^{r}=\arg \max _{y \in Y} w \cdot \phi\left(x^{r}, y\right)(\text { question 2) }
$$

- If $\tilde{y}^{r} \neq \hat{y}^{r}$, update w

$$
w \rightarrow w+\phi\left(x^{r}, \hat{y}^{r}\right)-\phi\left(x^{r}, \tilde{y}^{r}\right)
$$

- until w is not updated \longrightarrow We are done!

Algorithm - Example

- $\phi\left(x^{1}, \hat{y}^{1}\right)$
- $\phi\left(x^{1}, y\right)$
$\star \phi\left(x^{2}, \hat{y}^{2}\right)$
$\star \phi\left(x^{2}, y\right)$

- $\phi\left(x^{1}, \hat{y}^{1}\right)$

Algorithm - Example

Initialize w = 0
pick $\left(x^{1}, \hat{y}^{1}\right)$

- $\phi\left(x^{1}, y\right)$
$\star \phi\left(x^{2}, \hat{y}^{2}\right)$
$\star \phi\left(x^{2}, y\right)$
$\tilde{y}^{1}=\arg \max _{y \in Y} w \cdot \phi\left(x^{1}, y\right)$
If $\tilde{y}^{1} \neq \hat{y}^{1}$, update w

$$
w \rightarrow w+\phi\left(x^{1}, \hat{y}^{1}\right)-\phi\left(x^{1}, \tilde{y}^{1}\right) \quad \mathcal{W} \emptyset \tilde{y}^{1}
$$

Because $\mathrm{w}=0$ at this time, $\phi\left(x^{1}, y\right)$ always 0

Random pick one point as \tilde{y}^{r}

- $\phi\left(x^{1}, \hat{y}^{1}\right)$

Algorithm - Example

- $\phi\left(x^{1}, y\right)$
pick $\left(x^{2}, \hat{y}^{2}\right)$
$\tilde{y}^{2}=\arg \max _{y \in Y} w \cdot \phi\left(x^{2}, y\right)$
If $\tilde{y}^{2} \neq \hat{y}^{2}$, update w

$$
w \rightarrow w+\phi\left(x^{2}, \hat{y}^{2}\right)-\phi\left(x^{2}, \tilde{y}^{2}\right)
$$

- $\phi\left(x^{1}, \hat{y}^{1}\right)$

Algorithm - Example

- $\phi\left(x^{1}, y\right)$ $\star \phi\left(x^{2}, \hat{y}^{2}\right)$
pick $\left(x^{1}, \hat{y}^{1}\right)$ again
$\tilde{y}^{1}=\arg \max _{y \in Y} w \cdot \phi\left(x^{1}, y\right)$
$\tilde{y}^{1}=\hat{y}^{1} \Rightarrow$ do not update w
$\tilde{y}^{1}=\hat{y}^{1}$
$\star \phi\left(x^{2}, y\right)$

$$
\tilde{y}^{2}=\hat{y}^{2}
$$

pick $\left(x^{2}, \hat{y}^{2}\right)$ again
$\tilde{y}^{2}=\arg \max _{y \in Y} w \cdot \phi\left(x^{2}, y\right)$
$\tilde{y}^{2}=\hat{y}^{2} \Rightarrow$ do not update w

$$
\begin{aligned}
& w \cdot \phi\left(x^{1}, \hat{y}^{1}\right) \\
& \geq w \cdot \phi\left(x^{1}, y\right) \\
& w \cdot \phi\left(x^{2}, \hat{y}^{2}\right) \\
& \geq w \cdot \phi\left(x^{2}, y\right)
\end{aligned}
$$

So we are done

Assumption: Separable

- There exists a weight vector $\widehat{w} \quad\|\hat{w}\|=1$
$\forall r$ (All training examples)
$\forall y \in Y-\left\{\hat{y}^{r}\right\}$ (All incorrect label for an example)

$$
\begin{aligned}
& \hat{w} \cdot \phi\left(x^{r}, \hat{y}^{r}\right) \geq \hat{w} \cdot \phi\left(x^{r}, y\right) \text { (The target exists) } \\
& \hat{w} \cdot \phi\left(x^{r}, \hat{y}^{r}\right) \geq \hat{w} \cdot \phi\left(x^{r}, y\right)+\delta
\end{aligned}
$$

Assumption: Separable

$$
\begin{gathered}
\hat{w} \cdot \phi\left(x^{r}, \hat{y}^{r}\right) \geq \hat{w} \cdot \phi\left(x^{r}, y\right)+\delta \\
\bullet \phi\left(x^{1}, \hat{y}^{1}\right) \\
\bullet \phi\left(x^{1}, y\right) \\
\star \phi\left(x^{2}, \hat{y}^{2}\right) \\
\star \phi\left(x^{2}, y\right) \\
\ldots \ldots .
\end{gathered}
$$

Proof of Termination

w is updated once it sees a mistake

$$
\begin{aligned}
& w^{0}=0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \ldots \ldots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \ldots \ldots \\
& w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\left(\text { the relation of } w^{k} \text { and } w^{k-1}\right)
\end{aligned}
$$

Proof that: The angle ρ_{k} between \hat{w} and w_{k} is smaller as k increases
Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k}=\frac{\hat{\hat{w}} \cdot w^{k}}{\|\hat{w}\|} \cdot \frac{\left\|w^{k}\right\|}{}$

$$
\begin{aligned}
\hat{w} \cdot w^{k} & =\hat{w} \cdot\left(w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right) \\
& =\hat{w} \cdot w^{k-1}+\frac{\hat{w} \cdot \phi\left(x^{n}, \hat{y}^{n}\right)-\hat{w} \cdot \phi\left(x^{n}, \tilde{y}^{n}\right)}{\geq \delta(\text { Separable })} \geq \hat{w} \cdot w^{k-1}+\delta
\end{aligned}
$$

Proof of Termination

w is updated once it sees a mistake

$$
\begin{aligned}
& w^{0}=0 \rightarrow w^{1} \rightarrow w^{2} \rightarrow \ldots \ldots \rightarrow w^{k} \rightarrow w^{k+1} \rightarrow \ldots \ldots \\
& w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\left(\text { the relation of } w^{k} \text { and } w^{k-1}\right)
\end{aligned}
$$

Proof that: The angle ρ_{k} between \hat{w} and w_{k} is smaller as k increases
Analysis $\cos \rho_{k}$ (larger and larger?) $\cos \rho_{k}=\frac{\hat{w^{2}} \cdot w^{k}}{\|\hat{w}\|}$

$$
\hat{w} \cdot w^{k} \geq \hat{w} \cdot w^{k-1}+\delta
$$

$$
\hat{w} \cdot w^{1} \geq \hat{w} \cdot w^{0}+\delta
$$

$$
\geq \delta
$$

$$
\hat{w} \cdot w^{k} \geq k \delta
$$

$\hat{w} \cdot w^{1} \geq \delta$

$$
\begin{aligned}
& \hat{w} \cdot w^{2} \geq \hat{w} \cdot u \\
& \hat{w} \cdot w^{2} \geq 2 \delta
\end{aligned}
$$

(so what)

Proof of Termination

$$
\cos \rho_{k}=\frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\left\|w^{k}\right\|} \quad w^{k}=w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)
$$

$$
\left\|w^{k}\right\|^{2}=\left\|w^{k-1}+\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right\|^{2}
$$

$$
=\left\|w^{k-1}\right\|^{2}+\left.\frac{\| \phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)}{>0}\right|^{2}+\frac{2 w^{k-1} \cdot\left(\phi\left(x^{n}, \hat{y}^{n}\right)-\phi\left(x^{n}, \tilde{y}^{n}\right)\right)}{?<0 \text { (mistake) }}
$$

Assume the distance between any two feature vector is smaller than R

$$
\leq\left\|w^{k-1}\right\|+\mathrm{R}^{2}
$$

$$
\begin{aligned}
& \left\|w^{1}\right\|^{2} \leq\left\|w^{0}\right\|^{2}+\mathrm{R}^{2}=\mathrm{R}^{2} \\
& \left\|w^{2}\right\|^{2} \leq\left\|w^{1}\right\|^{2}+\mathrm{R}^{2} \leq 2 \mathrm{R}^{2} \\
& \cdots \\
& \left\|w^{k}\right\|^{2} \leq k \mathrm{R}^{2}
\end{aligned}
$$

Proof of Termination

$$
\begin{array}{rlrl}
\cos \rho_{k} & =\frac{\hat{w}}{\|\hat{w}\|} \cdot \frac{w^{k}}{\left\|w^{k}\right\|} & \hat{w} \cdot w^{k} \geq k \delta & \left\|w^{k}\right\|^{2} \leq k \mathrm{R}^{2} \\
& \geq \frac{k \delta}{\sqrt{k R^{2}}}=\sqrt{k} \frac{\delta}{R} & \cos \rho_{k} & \cos \rho_{k} \leq 1 \\
\sqrt{k} \frac{\delta}{R} \leq 1 & \\
k & & \sqrt{k} \frac{\delta}{R} \\
& & & \\
\hline
\end{array}
$$

Proof of Termination

Structured Linear Model: Reduce 3 Problems to 2

Problem 1: Evaluation

$F(x, y)=w \cdot \phi(x, y)$

- How to define $F(x, y)$

Problem A: Feature

Problem 2: Inference

- How to find the y with the largest $\mathrm{F}(\mathrm{x}, \mathrm{y})$

Problem 3: Training

- How to learn F(x,y)
- How to define $\phi(x, y)$

Problem B: Inference

- How to find the y with the largest $w \cdot \phi(x, y)$

